تجزئة البيانات وتوليد المعرفات الموزعة: قصة حلول مبتكرة لمشاكل معقدة

استمع للبودكاست حوار شيق بين لمى وأبو عمر
0:00 / 0:00

بتذكر أول مرة واجهت فيها مشكلة تجزئة البيانات، كنا شغالين على تطبيق توصيل طلبات. فجأة، صار عنا كمية طلبات مهولة، وقاعدة البيانات تبعتنا بلشت تصرخ وتئن. حرفياً، كنا نسمع صوتها من كثر الضغط عليها. 😅 وقتها، عرفنا إنه لازم نعمل اشي جذري، وإلا التطبيق راح يوقع على راسنا.

التجزئة (Sharding) وتوليد المعرفات الموزعة (Distributed IDs) هما حلول لمشاكل بتواجه أي نظام بيكبر وبصير عنده كمية بيانات كبيرة. خلينا نشوف كيف ممكن نحل هاي المشاكل بطرق ذكية ومبتكرة.

استراتيجيات التجزئة (Sharding Strategies)

التجزئة هي عملية تقسيم قاعدة البيانات الكبيرة إلى قواعد بيانات أصغر (shards) موجودة على خوادم مختلفة. كل جزء (shard) بيحتوي على مجموعة فرعية من البيانات، وهيك بنخفف الضغط على كل خادم وبنحسن الأداء.

Key Based (Hash)

هاي الاستراتيجية بتعتمد على استخدام هاش (Hash) للمفتاح الأساسي (Primary Key) لتحديد أي جزء (shard) راح يتم تخزين البيانات فيه. على سبيل المثال، ممكن نستخدم دالة هاش بسيطة زي:


def get_shard_id(key, num_shards):
  return hash(key) % num_shards

هاي الدالة بتاخد المفتاح الأساسي وعدد الأجزاء (shards) وبترجع رقم الجزء اللي لازم نخزن فيه البيانات. هاي الطريقة بتضمن توزيع متوازن للبيانات، بس المشكلة بتصير لما بدنا نغير عدد الأجزاء. تغيير عدد الأجزاء بيتطلب إعادة توزيع البيانات، وهاد ممكن يكون مكلف جداً.

نصيحة من أبو عمر: استخدم Consistent Hashing إذا كنت متوقع إنك تحتاج تغير عدد الخوادم في المستقبل. Consistent Hashing بيقلل كمية البيانات اللي لازم نعيد توزيعها لما نضيف أو نحذف خادم.

Range Based

هاي الاستراتيجية بتقسم البيانات بناءً على نطاق القيم (Range) للمفتاح الأساسي. على سبيل المثال، ممكن نخزن المستخدمين اللي بيبدأ اسمهم بحرف A-F في جزء (shard)، والمستخدمين اللي بيبدأ اسمهم بحرف G-L في جزء تاني، وهكذا.

المشكلة في هاي الطريقة هي “النقاط الساخنة” (Hotspots). إذا كان نطاق معين من القيم أكثر نشاطاً من غيره، فهاد الجزء (shard) راح يكون عليه ضغط أكبر من باقي الأجزاء. يعني مثلاً، لو كان عنا حملة تسويقية على منتج معين، الطلب على هاد المنتج راح يتركز في جزء واحد، وهاد راح يسبب مشاكل في الأداء.

نصيحة من أبو عمر: راقب توزيع البيانات بشكل مستمر وحاول تعدل النطاقات إذا لاحظت وجود نقاط ساخنة. ممكن كمان تستخدم تقنيات زي Shard Splitting لتقسيم الأجزاء الساخنة إلى أجزاء أصغر.

Geo-Sharding

هاي الاستراتيجية بتوزع البيانات بناءً على الموقع الجغرافي للمستخدمين. على سبيل المثال، ممكن نخزن بيانات المستخدمين الأوروبيين في خوادم موجودة في أوروبا، وبيانات المستخدمين الأمريكيين في خوادم موجودة في أمريكا. هاي الطريقة بتقلل زمن الاستجابة (Latency) للمستخدمين القريبين من الخوادم.

نصيحة من أبو عمر: Geo-Sharding مفيدة جداً للتطبيقات اللي بتخدم مستخدمين من مناطق جغرافية مختلفة. بس لازم تاخد في الاعتبار قوانين حماية البيانات في كل منطقة. على سبيل المثال، لازم تلتزم بقوانين GDPR في أوروبا.

خوارزمية Snowflake (من Twitter)

تويتر واجهت نفس المشكلة اللي واجهتنا في تطبيق التوصيل، بس على نطاق أوسع بكتير. عشان هيك، ابتكروا خوارزمية Snowflake لحل مشكلة توليد المعرفات في بيئة موزعة بشكل كامل.

فكرة Snowflake بسيطة وعبقرية: بنقسم المعرف (ID) لعدة أجزاء، كل جزء بيحمل معلومة معينة:

  • 1 بت: محجوز (إشارة). غالباً بيكون صفر.
  • 41 بت: طابع زمني (Timestamp) بالملي ثانية. هاد بيضمن إن المعرفات مرتبة زمنياً بشكل تقريبي (k-ordered).
  • 10 بت: معرف الجهاز (Machine ID). هاد بيسمح بوجود 1024 خادم توليد مستقل.
  • 12 بت: رقم تسلسلي (Sequence Number). هاد بيسمح لكل خادم بتوليد 4096 معرف فريد في الملي ثانية الواحدة.

هيك بصير عنا معرف فريد عالمياً، وبنفس الوقت مرتب زمنياً. هاي الخاصية مفيدة جداً للفهرسة في قواعد البيانات (B-Tree friendly).

مثال كود (Python):


import time

class Snowflake:
    def __init__(self, machine_id):
        self.machine_id = machine_id
        self.sequence = 0
        self.last_timestamp = -1

    def generate_id(self):
        timestamp = self.current_timestamp()

        if timestamp < self.last_timestamp:
            raise Exception("Clock is moving backwards.")

        if timestamp == self.last_timestamp:
            self.sequence = (self.sequence + 1) & 4095  # 4095 = 2^12 - 1
            if self.sequence == 0:
                timestamp = self.wait_for_next_millisecond(self.last_timestamp)
        else:
            self.sequence = 0

        self.last_timestamp = timestamp

        id = (
            (timestamp << 22) |
            (self.machine_id << 12) |
            self.sequence
        )
        return id

    def current_timestamp(self):
        return int(time.time() * 1000)

    def wait_for_next_millisecond(self, last_timestamp):
        while self.current_timestamp() <= last_timestamp:
            pass
        return self.current_timestamp()

# استخدام:
snowflake = Snowflake(machine_id=1)  # نفترض ان معرف الجهاز 1
new_id = snowflake.generate_id()
print(f"Generated ID: {new_id}")

نصيحة من أبو عمر: Snowflake خيار ممتاز إذا كنت محتاج تولد معرفات فريدة بسرعة وبشكل موثوق في بيئة موزعة. في كتير مكتبات جاهزة بتنفذ خوارزمية Snowflake بلغات برمجة مختلفة. دور على المكتبة اللي بتناسبك واستخدمها.

الخلاصة

التجزئة وتوليد المعرفات الموزعة هما تحديات أساسية في أي نظام بيكبر وبصير عنده كمية بيانات كبيرة. اختيار الاستراتيجية المناسبة بيعتمد على احتياجاتك الخاصة. Snowflake خيار ممتاز لتوليد المعرفات، بس لازم تاخد في الاعتبار متطلبات التزامن (Synchronization) بين الخوادم إذا كنت بتستخدمها في بيئة عالية التزامن.

نصيحة أخيرة من أبو عمر: لا تخاف تجرب وتتعلم. 🚀 التكنولوجيا بتتغير بسرعة، والحلول اللي بتشتغل اليوم ممكن ما تشتغل بكرة. خليك دائماً مستعد للتغيير والتجريب، وهيك راح تكون دايماً في المقدمة. 💪

أبو عمر

سجل دخولك لعمل نقاش تفاعلي

كافة المحادثات خاصة ولا يتم عرضها على الموقع نهائياً

آراء من النقاشات

لا توجد آراء منشورة بعد. كن أول من يشارك رأيه!

آخر المدونات

تجربة المستخدم والابداع البصري

من الكنباية في بالي إلى الكنباية في صالوني: رحلتي مع الواجهات الفضائية والواقع المعزز

أشارككم خبرتي كمبرمج فلسطيني في عالم الواجهات الفضائية (Spatial UX) والواقع المعزز. نستكشف معًا كيف تحولت الشاشات المسطحة إلى تجارب ثلاثية الأبعاد غامرة، ونتناول التحديات...

14 يناير، 2026 قراءة المزيد
تجربة المستخدم والابداع البصري

التصميم التوقعي والواجهات غير المرئية: كيف تجعل تطبيقاتك تقرأ أفكار المستخدمين؟

من منظور مطور برمجيات، أغوص في عالم التصميم التوقعي والواجهات غير المرئية (Zero UI). نستكشف كيف يمكن للتطبيقات أن تتنبأ باحتياجاتك قبل أن تطلبها، مع...

13 يناير، 2026 قراءة المزيد
من لمسة يد إلى همسة صوت: كيف تبني الواجهات متعددة الأنماط جيلاً جديداً من التجارب الرقمية
تجربة المستخدم والابداع البصري

من لمسة يد إلى همسة صوت: كيف تبني الواجهات متعددة الأنماط جيلاً جديداً من التجارب الرقمية

بدلاً من الاعتماد على الشاشات والنقر فقط، المستخدمون اليوم يتوقون لتفاعل طبيعي وسلس مع التكنولوجيا. في هذه المقالة، نستكشف عالم الواجهات متعددة الأنماط (Multimodal Interfaces)...

13 يناير، 2026 قراءة المزيد
تجربة المستخدم والابداع البصري

واجهتك تعرفك أكثر منك: كيف يصنع الذكاء الاصطناعي تجربة مستخدم فريدة لكل شخص؟

الواجهات الرقمية لم تعد مجرد تصميم ثابت، بل أصبحت كائنات حية تتكيف معك. في هذه المقالة، أغوص معكم في عالم الواجهات المخصصة بقوة الذكاء الاصطناعي،...

13 يناير، 2026 قراءة المزيد
التكنلوجيا المالية Fintech

الذكاء الاصطناعي الصوتي في البنوك: من طوابير الانتظار إلى معاملات فورية بصوتك

وكلاء الصوت الذكية يمثلون ثورة في كيفية تفاعل العملاء مع البنوك، محولين المعاملات المعقدة إلى محادثات طبيعية. في هذه المقالة، نستكشف كيف يغير الذكاء الاصطناعي...

13 يناير، 2026 قراءة المزيد
التكنلوجيا المالية Fintech

المالية المفتوحة: كيف تستعيد ملكية بياناتك المالية وتصنع مستقبلك؟

في عالم تتجاوز فيه المالية المفتوحة حدود الخدمات المصرفية، نستكشف كيف يمكنك امتلاك بياناتك المالية بالكامل، من الرواتب إلى الاستثمارات. مقالة من منظور المبرمج أبو...

13 يناير، 2026 قراءة المزيد
البودكاست